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Abstract. The rapid evolution of cyber-attacks—particularly zero-day intrusions and ransomware—has intensified 
the need for intelligent and resilient detection systems capable of handling imbalanced, high-dimensional network 
traffic. This research proposes a robust hybrid deep learning framework combining Convolutional Neural Networks 
(CNN) and Long Short-Term Memory (LSTM) networks for enhanced anomaly detection using the UGRansome 
dataset, a realistic benchmark designed for ransomware and zero-day behavior analysis. The methodology integrates 
advanced preprocessing, including categorical encoding, feature normalization, and Synthetic Minority Over-
sampling Technique (SMOTE) to alleviate class imbalance. The hybrid architecture leverages CNN layers for spatial 
feature extraction and LSTM layers for modeling temporal dependencies, enabling improved detection of emerging 
and stealthy threats. Experimental results demonstrate superior performance compared to standalone deep learning 
baselines, achieving 97.89% accuracy, 0.999 macro AUC, and strong detection capability across minority classes. 
Confusion matrix visualizations and classification metrics confirm the model’s robustness and generalization. The 
findings highlight the potential of hybrid deep learning models for proactive cybersecurity defense and establish a 
foundation for future intelligent intrusion detection systems. 
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INTRODUCTION 

Ransomware has emerged as one of the most 

financially devastating cybersecurity threats of the 

modern era. By encrypting files, applications, and entire 

systems, ransomware operators extort victims by 

demanding payments for data recovery [1]. Recent 

analyses highlight an alarming escalation: global 

ransomware-related damages increased by 93% between 

2018 and 2019 alone [2]. High-impact incidents in 2021 

demonstrated the severity of this threat, disrupting 

healthcare networks, food supply chains, and law 

enforcement infrastructure. Current estimates indicate 

that a business becomes a victim approximately every 14 

seconds as new, highly sophisticated ransomware 

families continue to evolve [3]. The financial 

consequences are severe, with average recovery costs 
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exceeding $1.85 million per incident according to 2019 

reports [4]. Despite advancements in security solutions, 

attackers continue to innovate at a faster pace, rendering 

many defensive systems ineffective. 

While significant research has focused on mitigating 

ransomware propagation, early detection remains far less 

explored [5]. Traditional signature-based intrusion 

detection systems fail against previously unseen 

variants, leaving organizations vulnerable to zero-day 

ransomware attacks. Studies reveal that more than 68% 

of infections involve substantial lateral movement within 

compromised networks before detection [6], amplifying 

financial losses and data exposure. According to 

Deloitte, detecting ransomware within the first 30 

minutes of infiltration could prevent up to 95% of overall 

damage [7]. Consequently, rapid identification of 

behavioral anomalies is essential for containment and 

recovery. 

Recent innovations in ransomware analytics 

demonstrate strong potential in detecting attacks using 

system call monitoring, registry activity, file behavior 

profiling, and network metadata analysis [8]. However, 

many of these techniques remain validated only in 

controlled or simulated environments, with limited 

evidence of real-world deployment effectiveness [9]. 

The development of reliable ransomware detection 

models is further hindered by challenges in collecting 

large-scale representative datasets, establishing 

trustworthy ground-truth labels, and maintaining high 

detection accuracy across imbalanced threat 

distributions [10]. As highlighted by Mohammed et al. 

[11], handling highly skewed datasets is critical in 

cybersecurity applications, where minority malicious 

patterns must be accurately identified to prevent 

catastrophic breaches. 

Deep learning (DL) has recently emerged as a 

promising direction for improving intrusion and 

ransomware detection due to its ability to automatically 

learn complex spatial and temporal patterns within 

network traffic. Convolutional Neural Networks (CNNs) 

have shown strong capability in extracting 

discriminative spatial representations across diverse 

intrusion scenarios [1]. Meanwhile, recurrent 

architectures such as Long Short-Term Memory (LSTM) 

networks excel at modeling sequential dependencies 

characteristic of multi-stage ransomware behaviors. 

Hybrid approaches combining CNN and LSTM designs 

have demonstrated superior performance by leveraging 

the strengths of both spatial and temporal learning 

mechanisms [3], [6], [7]. Additionally, DL-based 

intrusion detection has shown success across multiple 

real-world contexts, including IoT security [9], packet-

level malicious traffic identification [5], and general 

anomaly detection [8]. 

Despite these promising advances, most existing 

ransomware detection studies are limited by small-scale 

datasets, lack of real-world attack diversity, or 

insufficient modeling of both spatial and temporal 

relationships in network flows. There remains a critical 

need for robust hybrid deep learning frameworks capable 

of addressing imbalanced data, capturing rich behavioral 

signatures, and generalizing to unseen attack variants. 

Moreover, the rapid evolution of ransomware families 

necessitates models that remain effective even as 

attackers introduce new obfuscation and propagation 

strategies. 

To address these challenges, this study proposes a 

robust hybrid CNN–LSTM model for early detection of 

ransomware and zero-day intrusions. The approach 

leverages spatial feature extraction through 

convolutional layers and temporal sequence modeling 

through LSTM units, enabling deep behavioral 

understanding of ransomware activities. The model is 

trained and evaluated on the UGRansome dataset, a 

modern and realistic benchmark designed to capture 

diverse ransomware families, lateral movement patterns, 
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financial behaviors, and dynamic threat signatures. By 

incorporating advanced preprocessing, Z-score 

standardization, and class rebalancing using SMOTE, 

the proposed system aims to deliver high accuracy,  

 

LITERATURE REVIEW 

Recent advancements in ransomware and zero-day 

intrusion detection have shown significant progress in 

leveraging machine learning (ML), deep learning (DL), 

and hybrid intelligence models. Table 1 summarizes 

major contributions from 2021 to 2025, illustrating the 

rapid evolution of detection methodologies, model 

architectures, and performance trends. 

Su. [12] introduced a generative mathematical 

framework for ransomware prediction, integrating Extra 

Trees, AVOA, and CNN-BiLSTM benchmark models. 

The proposed system achieved high predictive 

performance, with accuracies ranging from 96.2% to 

98.1%, demonstrating the value of combining generative 

modeling with deep learning for attack forecasting. 

Similarly, Alsmadi et al. [13] proposed a self-adaptive 

intrusion detection system based on Deep Q-Networks 

(DQN), highlighting the potential of reinforcement 

learning (RL) to autonomously adapt to evolving 

ransomware behavior, achieving a 97.6% detection rate. 

Hybrid deep learning models have also gained traction. 

Yan et al. [14] employed a hybrid CNN–LSTM 

framework for ransomware detection, achieving 97.4% 

accuracy and validating the strength of spatial–temporal 

feature learning. Tokmak and Nkongolo [15] explored 

autoencoder-driven feature selection combined with 

DNN and XGBoost classifiers, reaching 97.0% and 

95.5% accuracy, respectively. Their findings highlight 

the importance of dimensionality reduction and 

optimized feature representation in enhancing detection 

performance. Additionally, Tokmak. [16] extended this 

line of research by applying Deep Forest and Deep 

Neural Network models to zero-day threat detection in 

critical infrastructure systems, achieving accuracies of 

97.7% and 97.0%. 

Classical ML techniques remain relevant as 

baselines. Chaudhary and Adhikari [17] evaluated 

multiple models including Decision Trees, Support 

Vector Machines, and Multilayer Perceptrons, reporting 

performance ranging between 61.89% and 95.0%, 

underscoring both the diversity of ML performance and 

the limitations of non-deep-learning approaches in 

handling complex ransomware behaviors. Azugo et al. 

[18] further contributed to dataset-focused research 

using the UGRansome2024 dataset, demonstrating that 

Random Forest classifiers can still achieve high accuracy 

(96.0%) despite the dataset’s complexity and imbalance. 

Earlier foundational works also shaped the 

progression of this domain. Zahra [19] introduced an 

ensemble voting-based anomaly detection method 

achieving 98.0% accuracy, while Nkongolo et al. [20] 

presented the seminal UGRansome1819 dataset 

alongside an ensemble learning approach that also 

reached 98.0%. These studies established the necessity 

of realistic datasets and robust ensemble learning 

strategies for ransomware detection. 

Across these contributions, several themes emerge: 

1. Hybrid architectures outperform standalone 

models, particularly when combining CNNs 

with sequence-based models such as LSTMs. 

2. Feature selection and dimensionality reduction 

significantly enhance model efficiency and 

performance. 

3. Reinforcement learning and generative 

modeling represent novel directions with strong 

adaptability to evolving threats. 

4. High-performing classical ML methods such as 

Random Forest and ensemble voting still 

provide competitive baselines. 

5. Dataset evolution (UGRansome → 

UGRansome2024) plays a critical role in 
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driving methodological innovation and realistic 

evaluation. 

Despite notable progress, existing works reveal a 

gap: few studies integrate hybrid deep learning with 

advanced preprocessing on modern ransomware datasets 

such as UGRansome, particularly models that jointly 

learn spatial-temporal patterns while addressing severe 

class imbalance. This gap forms the foundation for the 

proposed hybrid CNN–LSTM framework in this study, 

we can see in Table 1.

Table 1: Summarizes 

Year Researcher Tittle Methode Result 

2025 Su, Ruofan 
Generative mathematical 
models for ransomware 

attack prediction 

Extra Trees + AVOACNN-
BiLSTM (Benchmark)SAE-

SVM (Benchmark) 
98.1%~96.5%~96.2% 

2025 Alsmadi, A. et 
al. 

A Self-Adaptive Intrusion 
Detection System Using 

Deep Q-Networks 

Deep Q-Network (DQN) (RL 
Hybrid) 97.6% 

2024 Yan, J. et al. Ransomware detection using 
Hybrid Deep Learning Hybrid CNN-LSTM 97.4% 

2024 Chaudhary & 
Adhikari 

Ransomware Detection 
Using Machine Learning 

Techniques 

Decision Tree (DT)SVMMLP 
(Neural Network) 61.89%~95.0% 

2024 Azugo, P. et al. Ransomware Detection... 
UGRansome2024 Dataset Random Forest (RF) 96.0% 

2024 Tokmak, M. & 
Nkongolo, M. 

Stacking an autoencoder for 
feature selection 

DNN (Deep Neural 
Net)XGBoost 97.0%95.5% 

2023 Tokmak, M. Zero-Day Threats Detection 
for Critical Infrastructures 

Deep Forest and  Deep Neural 
Network (DNN) 97.7%97.0% 

2022 Zahra, S. R. Optimal Approach for 
Anomaly Intrusion Detection Ensemble (Voting) 98.0% 

2021 Nkongolo et al. 
UGRansome1819: A Novel 

Dataset for Anomaly 
Detection 

Ensemble Learning 98.0% 

 

Research Methodology 
Dataset Description and Preprocessing 

A. Dataset Description 

This study employs the UGRansome dataset [20], a 

crucial benchmark for ransomware and zero-day threat 

detection [21], [22]. What distinguishes UGRansome 

from earlier datasets is its inclusion of modern and 

previously undocumented ransomware variants [22]. It 

incorporates multiple prominent ransomware families 

such as Locky, CryptoLocker, and WannaCry, as well as 

advanced and persistent cyber-attack behaviors. The 

dataset contains 207,533 samples, each described by 14 

well-defined features, offering a comprehensive 

representation of ransomware-related characteristics, as 

summarized in Table I. The dataset was selected for its 

large sample size, which supports effective training and 

evaluation of machine learning models, and for its 

structured feature set that enables the extraction of 

meaningful patterns and actionable insights. 

 

Table 2: Dataset Features And Descriptions 

Feature Description 
Time Quantitative feature representing the 

timestamp of each network event or 
attack instance. 
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Protocol Qualitative/categorical feature 
indicating the communication 
protocol used (e.g., TCP, UDP). 

Flag Qualitative/categorical feature 
describing the network connection 
status (e.g., SYN, ACK). 

Family Qualitative/categorical feature 
identifying the ransomware or 
intrusion family associated with the 
event. 

Clusters Quantitative feature representing 
numerical identifiers for clustered 
attack events or behavioral groups. 

SeedAddress Qualitative/categorical feature 
containing formatted ransomware 
attack source addresses. 

ExpAddress Qualitative/categorical feature 
listing original or expanded 
ransomware attack destination links. 

BTC Numerical feature capturing values 
associated with Bitcoin transactions 
linked to the attack. 

USD Numerical feature indicating 
estimated financial losses in USD 
caused by the attack instance. 

Netflow 
Bytes 

Quantitative feature showing the 
total number of bytes transferred in 
the corresponding network flow. 

IPaddress Qualitative feature containing IP 
addresses associated with observed 
network activities or threats. 

Threats Qualitative feature specifying the 
type or nature of threats or 
intrusions recorded. 

Port Numerical feature indicating the 
network port number utilized during 
the event. 

Prediction Target variable; 
qualitative/categorical feature 
representing the classification 
outcome: Anomaly (A), Signature 
(S), or Synthetic Signature (SS). 

 
B. Categorical Encoding 

The dataset contains multiple non-numeric (object) 

features. Since deep learning models require numeric 

inputs, all categorical features except the label column 

were transformed using Label Encoding, where each 

unique value is mapped to an integer ID: 

  xencoded= LabelEncoder(x) ………………………….(1) 

This approach preserves category identity while 

maintaining a compact representation suitable for CNN 

processing. The Prediction label was also label-encoded 

and subsequently converted to one-hot vectors using: 

    yone-hot= to_categorical(yencoded)……………….. (2) 

 This ensures compatibility with the softmax output 

layer for multi-class classification. 

 

C.  Feature Scaling 

To standardize feature distributions and promote 

stable training dynamics, the input matrix XXX was 

scaled using Z-score standardization via StandardScaler: 

    𝑥 = !"#
$

 …………………………………………(3) 

Where: 

μ= feature mean,   σ = feature standard deviation. 

Standardization ensures that all input features 

contribute proportionally during gradient updates and 

prevents scale-dominated learning. 

 

D.  Class Balancing with SMOTE 

This study utilizes the UGRansome dataset, a 

comprehensive collection of network traffic data 

designed for anomaly detection and ransomware 

identification. The dataset initially exhibited significant 

class imbalance, as illustrated in Figure 1 (Class 

Distribution Before SMOTE), where the majority class 

(Class1) contained approximately 65,000 samples, 

significantly outnumbering Class 0 and Class 2. 

 
Figure 1:  Class Distribution Before SMOTE 
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To prevent model bias toward the majority class, we 

employed Synthetic Minority Over-sampling Technique 

(SMOTE) on the training data. This technique generates 

synthetic samples for the minority classes by 

interpolating between existing minority instances. As 

shown in Figure 2 (Class Distribution After SMOTE), 

this process successfully balanced the dataset, resulting 

in an equal distribution of approximately 65,000 samples 

for each class. 

 
Figure 2:  Class Distribution After SMOTE 

Following balancing, the data was normalized to 

ensure efficient training convergence and split into 

training, validation, and testing sets. 

 

E.  Proposed Model Architecture (Hybrid CNN-

LSTM) 

We propose a Hybrid Deep Learning model 

combining Convolutional Neural Networks (CNN) and 

Long Short-Term Memory (LSTM) networks to 

effectively detect ransomware patterns in network flow 

data. The complete methodological flow, from raw data 

processing to evaluation, is illustrated in Figure 3. 

 
Figure 3 : Model Architecture (Hybrid CNN-LSTM) 

 

As shown in the "Training and Validation" block of 

Figure 3, the model utilizes a parallel architecture: 

1. CNN Branch: The input is fed into 1D-

Convolutional layers designed to automatically 

extract high-level spatial features and local 

dependencies from the tabular NetFlow attributes. 

2. LSTM Branch: Simultaneously, the input is 

processed by LSTM layers to capture temporal 

dependencies and sequential patterns within the 

network traffic over time. 

3. Concatenation and Classification: The outputs of 

both the CNN and LSTM branches are merged via 

a Concatenation Layer. This combined feature set 

is passed through dense layers with dropout for 

regularization. Finally, an output layer (utilizing 
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Softmax for multi-class classification) assigns the 

input to one of the three target classes. 

 

RESULTS AND DISCUSSION 

This section presents the performance analysis of the 

proposed hybrid CNN–LSTM model on the 

UGRansome dataset. After applying preprocessing, 

SMOTE balancing, and Z-score normalization, the 

model was trained and evaluated using an 80/20 

stratified train–test split. Performance was measured 

through multiple classification metrics commonly used 

in intrusion detection research. 

 

A. Performance Metrics 

Table 2 and Figure 4 summarize the key performance 

indicators obtained from the proposed model on the test 

set. The CNN–LSTM architecture demonstrates strong 

predictive capability across all ransomware and intrusion 

categories. The model achieves high accuracy, excellent 

precision and recall, and near-perfect ROC–AUC scores, 

confirming its suitability for detecting both frequent and 

minority ransomware classes. 

 

Table 3: Performance Evaluation Of Hybrid CNN–

LSTM Model 

Metric Value 

Accuracy 98.6% 

Precision (Macro Avg.) 0.98 

Recall (Macro Avg.) 0.98 

F1-Score (Macro Avg.) 0.98 

ROC–AUC (Macro) 0.99917 

ROC–AUC (Micro) 0.99927 

 

 
Figure 4: Training and validation accuracy/loss curves 

 

Figure 4 illustrates the training and validation 

accuracy and loss across 25 epochs. Both accuracy 

curves show a consistent upward trend, converging near 

98%. The loss curves steadily decrease with no 

indication of divergence, demonstrating that the model 

converges smoothly without overfitting. The minimal 

gap between training and validation curves further 

confirms strong generalization capability. 

 

B. Confusion Matrix Analysis 

The confusion matrix (Figure 5) reveals a strong 

diagonal pattern, indicating highly accurate predictions 

across all classes: 

• Class 0: 13,029 correctly classified 

• Class 1: 12,920 correctly classified 

• Class 2: 13,177 correctly classified 

 
Figure 5: Confusion matrix 

 

Misclassifications are minimal. The model 

demonstrates low false-negative rates, which is critical 
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for ransomware and zero-day intrusion detection where 

undetected attacks may cause severe damage. 

 

C. ROC Curve and AUC 

The one-vs-rest ROC curves (Figure 6) show 

excellent separability for all classes, with AUC values 

approaching 1.00, demonstrating near-perfect 

discrimination. Both macro and micro AUC values 

(0.999+) highlight the robustness of the CNN–LSTM 

model, confirming its ability to distinguish subtle 

variations in ransomware network flow. 

 
Figure 6: ROC curves for all classes 

 

DISCUSSION 

The experimental outcomes reveal the superiority of 

the proposed CNN–LSTM framework in learning both 

spatial and temporal features from the UGRansome 

dataset. The CNN layers effectively capture local feature 

dependencies, while the LSTM layer models sequential 

dynamics inherent to ransomware behavior. The 

integration of SMOTE ensures balanced learning, 

improving recall for minority classes. 

Compared to traditional machine learning approaches 

reported in the literature (e.g., Decision Trees, Random 

Forest, XGBoost), the proposed hybrid model not only 

reaches comparable high accuracy but also maintains 

superior generalization through stable training 

dynamics. These findings confirm that hybrid deep 

learning architectures are highly suitable for detecting 

complex and evolving cyber threats. 

 

CONCLUSION 

This study presented a robust hybrid CNN–LSTM 

framework designed to detect ransomware and zero-day 

intrusions using the UGRansome dataset. The 

methodological pipeline integrated label encoding, Z-

score standardization, and SMOTE resampling to 

address data imbalance and ensure reliable learning 

across all attack categories. The proposed architecture 

effectively combines the spatial feature extraction 

capabilities of Convolutional Neural Networks (CNN) 

with the temporal sequence modeling strength of Long 

Short-Term Memory (LSTM) networks. 

Experimental results demonstrate that the model 

achieves high accuracy (≈98.6%), strong macro- and 

micro-AUC scores (≈0.999), and excellent precision, 

recall, and F1-values across all classes. The confusion 

matrix and ROC curves confirm the model’s capability 

to accurately detect minority ransomware patterns and 

distinguish between anomaly, signature, and synthetic 

signature events with minimal misclassification. These 

findings emphasize the effectiveness of hybrid deep 

learning architectures in capturing complex behavioral 

characteristics of ransomware propagation and zero-day 

attack vectors. 

Overall, the work highlights that combining CNN 

and LSTM components—supported by proper 

preprocessing and class balancing—offers a powerful 

approach for building next-generation intrusion 

detection systems capable of addressing the evolving 

cybersecurity landscape. The proposed framework 

provides a scalable and adaptive model suitable for 

deployment in real-time security monitoring systems. 

Future work may focus on enhancing model 

interpretability through explainable AI techniques, 

optimizing the architecture for real-time or edge 
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deployment, and evaluating robustness across additional 

datasets and adversarial scenarios. Expanding the 

framework with attention mechanisms or lightweight 

Transformer-based components may further improve 

detection performance and adaptability to evolving 

threats. 

 

REFERENCES 

[1] L. Mohammadpour, “A Survey of CNN-Based 

Network Intrusion Detection,” Applied Sciences, 

vol. 12, no. 16, 8162, 2022. 

[2] K. Zhang, Y. Wang, U. Bhatti, Y. Zhou, and M. Jin, 

“Enhanced ransomware attacks detection using 

feature selection, sensitivity analysis, and 

optimized hybrid model,” Journal of Big Data, 

2025. 

[3] Md. A. Rahman and S. M. R. H. Nijhum, 

“Recurrent Neural Network Based Hybrid Deep 

Learning Architecture for Enhanced Network 

Intrusion Detection,” in Proc. PEEIACON, 2024, 

pp. 400–405. 

[4] Y. Wang, “Deep Learning-Based Network 

Intrusion Detection Systems,” Applied and 

Computational Engineering, vol. 109, no. 1, pp. 

179–188, 2024. 

[5] B. Wang, Y. Su, M. Zhang, and J. Nie, “A Deep 

Hierarchical Network for Packet-Level Malicious 

Traffic Detection,” IEEE Access, vol. 8, pp. 

201728–201740, 2020. 

[6] J. Yin, B. Hou, J. Dai, and Y. Zu, “A CNN-

BiLSTM Method Based on Attention Mechanism 

for Class-Imbalanced Abnormal Traffic 

Detection,” 2024. 

[7] N. Elsayed, Z. S. Zaghloul, S. W. Azumah, and C. 

Li, “Intrusion Detection System in Smart Home 

Network Using Bidirectional LSTM and 

Convolutional Neural Networks Hybrid Model,” 

2021. [Online]. Available: 

https://arxiv.org/abs/2105.12096 

[8] I. Shivhare, J. Purohit, V. Jogani, S. Attari, and M. 

Chandane, “Intrusion Detection: A Deep Learning 

Approach,” 2023. [Online]. Available: 

https://arxiv.org/abs/2306.07601 

[9] A. Gueriani, H. Kheddar, and A. C. Mazari, 

“Enhancing IoT Security with CNN and LSTM-

Based Intrusion Detection Systems,” 2024. 

[10] The Age of Ransomware: A Survey on the 

Evolution, Taxonomy, and Research Directions, 

IEEE Access, vol. 11, pp. 40698–40723, 2023. 

[11] Z. H. Mohammed, F. H. Khorsheed, and G. J. 

Ahmed, “Ensemble Deep Learning Strategy for 

Handling Imbalanced Credit Card Fraud Data,” 

JOINCS (Journal of Informatics, Network, and 

Computer Science), vol. 8, no. 2, pp. 94–105, 2025. 

[12] R. Su, Generative Mathematical Models for 

Ransomware Attack Prediction, 2025. 

[13] A. Alsmadi, et al., “A Self-Adaptive Intrusion 

Detection System Using Deep Q-Networks,” 2025. 

[14] J. Yan, et al., “Ransomware Detection Using 

Hybrid Deep Learning,” 2024. 

[15] M. Tokmak and M. Nkongolo, “Stacking an 

Autoencoder for Feature Selection in Ransomware 

Detection,” 2024. 

[16] M. Tokmak, Zero-Day Threats Detection for 

Critical Infrastructures, 2023. 

[17] S. Chaudhary and A. Adhikari, “Ransomware 

Detection Using Machine Learning Techniques,” 

2024. 

[18] P. Azugo, H. Venter, and R. Nkongolo, 

“Ransomware Detection Using the 

UGRansome2024 Dataset,” 2024. 

[19] S. R. Zahra, “Optimal Approach for Anomaly 

Intrusion Detection Using Ensemble Learning,” 

2022. 

https://arxiv.org/abs/2105.12096
https://arxiv.org/abs/2306.07601


10 
 

[20] R. Nkongolo, et al., “UGRansome1819: A Novel 

Dataset for Anomaly Detection and Zero-Day 

Threats,” 2021. M. Wa Nkongolo, "UGRansome 

Dataset." Kaggle, 

https://doi.org/10.34740/KAGGLE/DSV/7172543. 

[21] M. Tokmak, "Deep Forest Approach for Zero-Day 

Attacks Detection," in Innovations and 

Technologies in Engineering, S. Tasdemir and I. 

Ali Ozkan, Eds. Istanbul, Turkey: Eğitim Yayinevi, 

2022. 

[22] D. Shankar, G. V. Sudha, J. N. S. S. Naidu, and P. 

S. Madhuri, "Deep Analysis of Risks and Recent 

Trends Towards Network Intrusion Detection 

System," International Journal of Advanced 

Computer Science and Applications, vol. 14, no. 1, 

pp. 262-276, 2023, 

https://doi.org/10.14569/IJACSA.2023.0140129. 

 

 

 

 

 

 

 

 

 

 

 

Conflict of Interest Statement: 

The author declares that the research was 
conducted in the absence of any commercial or 
financial relation- ships that could be construed 
as a potential conflict of interest. 

 

Article History: 

Received: 22 Desember 2025 | Accepted: 04 
January 2025| Published: 30 April 2025 

Copyright © 2026 Farah Hatem Khorsheed , Enas Abbas Abed , Zainab Hassan Mohammed, Walaa Badr Khudhair Alwan, Zainab Khazal Shamel. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original 
author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms 

  

https://doi.org/10.34740/KAGGLE/DSV/7172543
https://doi.org/10.14569/IJACSA.2023.0140129

