Neural Network Implementation for Anomaly Detection of Brute Force Attacks in Intrusion Detection Systems
Implementasi Neural Network untuk Anomaly Detection pada Serangan Brute Force pada Sistem Deteksi Intrusi
Abstract
Pada penelitian ini telah dilakukan uji efektivitas neural network dalam Sistem Deteksi Intrusi (IDS) pada data serangan brute force. Melalui uji coba tersebut, penelitian mengidentifikasi parameter-parameter optimal yang dapat menghasilkan hasil yang akurat dalam deteksi intrusi. Hasil penelitian mengungkapkan beberapa parameter neural network akan mencapai hasil yang optimal jika parameter learning rate sebesar 0,1, proporsi data latih dan data uji sebesar 80:20, dan jumlah optimal node dalam hidden layer 4. Parameter lain seperti minimum error sebesar 0,0001 dan iterasi sebanyak 2500 juga memainkan peran krusial dalam meningkatkan kemampuan IDS. Berdasarkan penelitian menunjukan model neural network dapat memberikan hasil optimal dalam mendeteksi pola intrusi. Penelitian ini dapat membantu dalam pengembangan IDS berbasis neural network yang handal dan efisien untuk mengatasi tantangan deteksi intrusi.
References
[2] G. K. Sadasivam, C. Hota, and B. Anand, “Classification of SSH attacks using machine learning algorithms,” 2016 6th Int. Conf. IT Converg. Secur. ICITCS 2016, 2016, doi: 10.1109/ICITCS.2016.7740316.
[3] Y. Otoum and A. Nayak, “AS-IDS: Anomaly and Signature Based IDS for the Internet of Things,” J. Netw. Syst. Manag., vol. 29, no. 3, Jul. 2021, doi: 10.1007/S10922-021-09589-6.
[4] Y. Sung, S. Jang, Y. S. Jeong, and J. H. (James J. ). Park, “Malware classification algorithm using advanced Word2vec-based Bi-LSTM for ground control stations,” Comput. Commun., vol. 153, no. January, pp. 342–348, 2020, doi: 10.1016/j.comcom.2020.02.005.
[5] M. Guri, R. Puzis, K. K. R. Choo, S. Rubinshtein, G. Kedma, and Y. Elovici, “Using malware for the greater good: Mitigating data leakage,” J. Netw. Comput. Appl., vol. 145, p. 102405, Nov. 2019, doi: 10.1016/J.JNCA.2019.07.006.
[6] H. J. Liao, C. H. Richard Lin, Y. C. Lin, and K. Y. Tung, “Intrusion detection system: A comprehensive review,” J. Netw. Comput. Appl., vol. 36, no. 1, pp. 16–24, 2013, doi: 10.1016/j.jnca.2012.09.004.
[7] Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, “A bidirectional LSTM deep learning approach for intrusion detection,” Expert Syst. Appl., vol. 185, no. July, p. 115524, 2021, doi: 10.1016/j.eswa.2021.115524.
[8] V. Bhatia, S. Choudhary, and K. R. Ramkumar, “A Comparative Study on Various Intrusion Detection Techniques Using Machine Learning and Neural Network,” ICRITO 2020 - IEEE 8th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir., pp. 232–236, Jun. 2020, doi: 10.1109/ICRITO48877.2020.9198008.
[9] S. Hosseini and B. M. H. Zade, “New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN,” Comput. Networks, vol. 173, p. 107168, May 2020, doi: 10.1016/J.COMNET.2020.107168.
[10] S. Gamage and J. Samarabandu, “Deep learning methods in network intrusion detection: A survey and an objective comparison,” J. Netw. Comput. Appl., vol. 169, p. 102767, Nov. 2020, doi: 10.1016/J.JNCA.2020.102767.
[11] M. Pawlicki, R. Kozik, and M. Choraś, “A survey on neural networks for (cyber-) security and (cyber-) security of neural networks,” Neurocomputing, vol. 500, pp. 1075–1087, Aug. 2022, doi: 10.1016/J.NEUCOM.2022.06.002/A_SURVEY_ON_NEURAL_NETWORKS_FOR_CYBER_SECURITY_AND_CYBER_SECURITY_OF_NEURAL_NETWORKS.PDF.
[12] M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi,” IOP Conf. Ser. Mater. Sci. Eng., vol. 874, no. 1, 2020, doi: 10.1088/1757-899X/874/1/012017.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ahmad Heryanto, Adi Hermansyah, Triwanda Septian, Ali Bardadi

This work is licensed under a Creative Commons Attribution 4.0 International License.