Extraction of Normal characteristics and Abnormal cardiac signals using methods of Sampling techniques
Ekstraksi Ciri Normal Dan Abnormal Sinyal Jantung Menggunakan Metode Teknik Sampling
Abstract
Health is a serious issue facing the world today. Health problems are increasingly growing with changing times. One of them is the health of the heart, so we need a data that can monitor the condition of normalcy and abnormal heartbeat of a person with the method of sampling technique, heart rate and position of a person so that later in the event of health problems that are really worrying can be quickly resolved quickly integrated with of course sending information that can receive long distance and accurate. The data obtained will be entered into the matlab for data calculation and data processing, after that the data obtained will be calculated by the sampling technique method, where this technique can diagnose the normality and abnormality characteristics of the heart signal with a percentage of almost 99% where this research can replace diagnosis of heart signals medically and then the data is sent through matlab data collection communication and entered into the database of health agencies or hospitals and can be used as a reference for the first action before a medical action is performed.
References
G. A. Away, “The Shortcut of MATLAB Programming,” Bandung: Informatika, 2010.
M. D. Wuryandari and I. Afrianto, “PERBANDINGAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION PADA PENGENALAN WAJAH,” vol. Vol. 1 No., F. T. dan I. K. U. K. Indonesia, Ed. Bandung: Jurnal Komputer dan Informatika (KOMPUTA), 2013.
B. Haryadi, EKSTRAKSI CIRI POLA BUNYI JANTUNG MENGGUNAKAN FFT. Yogyakarta: Universitas Ahmad Dahlan, 2005.
F. S. Ig R. Haryosuprobo, Yohanes Sugiarto, “Ekstraksi Ciri Sinyal EKG AritmiaMenggunakan Gelombang Singkat Diskrit,” Surakarta: Politeknik ATMI Surakarta, 2016, pp. 149–164.
A. Surtono and M. Sri Widodo, Thomas Tjokronagoro, “Analisis Klasifikasi Sinyal EKG Berbasis Wavelet dan Jaringan Syaraf Tiruan,” in Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI);, Yogyakarta: Jurusan Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada, 2015, p. Vol 1, No 3 (2012); 60-66.
M. R. Silaban, “RECOVERY SINYAL FECG DARI SINYAL ABDOMINAL ECG MENGGUNAKAN FILTER ADAPTIF BERBASIS TMS 320C50 (RECOVERY FECG SIGNAL FROM ABDOMINAL ECG SIGNAL USE ADAPTIF FILTER BASED ON TMS 320C50 ),” Universitas Telkom, 2006.
D. Kristomo, O. Wahyunggoro, and I. Soesanti, “Klasifikasi Suara Jantung Menggunakan Jaringan Neural Dengan Ciri Statistik Dan Spektral,” Yogyakarta: Jurusan Teknik Elektro Dan Teknologi Informasi FT UGM, 2014.
E. M. Cherry, “Mechanisms of ventricular arrhythmias: a dynamical systems-based perspective,” American J., America: Am J Physiol Heart Circ Physiol, 2012. DOI: https://doi.org/10.1152/ajpheart.00770.2011
Copyright (c) 2019 Dimas Tri Anggara, Hindarto
This work is licensed under a Creative Commons Attribution 4.0 International License.